

18

Ha=

..

1-4
=

m :
.

1°_25

FWP}WY‘PFE‘FXWWSTWWWWI‘“W ey XY

« - v J
) -}-*'- "(‘
Ny “~
et :5‘-

W) SN0

PARALLEL IMPLEMENTATIONS OF GRADIENT
BASED ITERATIVE ALGORITHMS FOR A CLASS OF
DISCRETE OPTIMAL CONTROL PROBLEMS

AD~A177 792

Gerard G. L. Meyer and Louis J. Podrazik

REPORT JHU/ECE-87/03

Electrical and Computer Engineering Department
The Johns Hopkins University
Baltimore, Maryland 21218

,.
e
[P

o,

T

ELRCTE
MAR 0 5 1987

E - DTIC
o2

This work was supported by the Air Force Office of Scientific Research under Con-
tract AFOSR-85-0097.

I Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

s REPOAT SECURITY CLASSIFICATION 0. RESTRICTIVE MARKINGS

Y

e

Unclassified 2
2e. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT N
20. DECLASSIFICATION/OOWNGRADING SCHEDULE : Unrestricted
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

JHU/ECE-87/03

68. VAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7e. NAME OF MONITORING ORGANIZATION

(1f applicable)
The Johns Hopkins University Air Force Office of Scientific Research /NM
6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)
Charles and 34th Streets
Baltimore, Maryland 21218 Bolling AFB, Washington DC 20332
8. NAME OF FUNDING/SPONSQRING B8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
QRGANIZATION (1f applicadie)
AFOSR/PKZ N/A AFOSR-85-0097
w: ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
Building 410 enostet, | rnomer | mage [womgen
Bolling AFB - DC 20332-6448
11 TITLE finciude Security Clasficstion! pargllel Implementations of Gradi¢nt Based (Iterative Algorithms
For a Class of Discrete Optimal Control Probldms
12, PERSONAL AUTHOR(S) :

Gerard G. L. Meyer and Louis J. Podrazik

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr, Mo., Day) 18. PAGE COUNT
Interim raom 1/1/87 +02/28/87| February 28, 1987 29
18. SUPPLEMENTARY NOTATION
N/A -
c..
17 COSATI CODES 18. SUBJECT TEAMS (Continue on reverse if necessary and identify dy block number) -:.
fIELD | GROUP Sus. of. Algorithm, parallelism, optimal control, gradient he:
procedure K

19. AGSTRACLT /Continue on reverse if necessary and identify dy dlock number)

In this paper we present the parallel implementations of two iterative gradient
based algorithms to solve the unconstrained linear quadratic regulator optimal control
problem. We show that parallel evaluation of the step length and gradient of the
quadratic cost function can be efficiently performed as a function of the number of
processors. We then embed our parallel step length and gradient procedures to produce
parallel implementations of the gradient and conjugate gradient methods that may be
executed on an SIMD machine.

20. DISTRIAUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED K] same as apT. . oTic users O Unclassified
22s. NAME OF RESPONSIBLE INDIVIOUAL 22b. TELEPHONE NUMBER 22c OFFICE S$YMBOL
tinclude Area Code/
Major Brian Woodruff (202)-767~5027
DD FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE. Unclassified

SECURITY CLASSIFICATION OF Tm.:S PAGE

\ ABSTRACT i

v T 4
‘-In this paperwe present;ﬁhe parallel implementations of two iterative gra- ~
dient based algorithms to solve the unconstrained linear quadratic regulator
L

optimal control problem. “We show».'phat parallel evaluation of the step length Y

Ly
)

L,
R

and gradient of the quadratic cost function can be efficiently performed as a funec-

2

tion of the number of processors. We then embed our parallel step length and

Y
N

gradient procedures to produce parallel implementations of the gradient and con-

A
SO
T ael

jugate gradient methods that may be executed on an SIMD machine.

r

4 r-{"
hi

a4, b

B

-
t]
.
.

3
P

.

&

&‘N‘ﬂ.":'n ‘y y

»

Acceasion Por
N

NTIS GRAXI g
DTIC TAB

Unannounced 0O
Justification]

YN
S,

R
»
-

i
"l
"

2

By
Digt’.ribiut_ipn/
Availability Codes
Avail and/or
Dist Special

A-l

ﬂl

V.7,
1 ‘t’
s

. 7

:

X
[]

{"'r'a
T A

LR
.

e
>

.,:"‘:.."
'l‘ .. :.(.

|
I"bPL’—flLb
4

S
Sy

IR
1

[N
l'l...‘.'.

gy "

t',‘n‘. 2
Ay e

LA . LT L T RS S S SR YU IR Sl il LI Nr St S S U ¥ R e e A T, T e S N L St DN SRR - L
EAE SRR ._-‘_‘J‘\J’ PO (\-l'._f-r -"~\-_ o \ < N *\-__ X o SRR

e
e Tl TN

ataNp A
WL SR L -."'-.'.'.

I. INTRODUCTION

Previous parallel approaches to the solution of optimal control problems
[LAR73], [MEY73], [SCH81|, [TRAS80] have been devised without explicitly taking
into consideration the computational environment. In particular, when the
number of available processors is small in relation to the problem size, the above
techniques simply fold the computations to fit the number of processors. More
efficient parallel algorithms may be devised by considering the computational
environment throughout the algorithm synthesis. Toward that end, we present
in this paper a parallel procedure for gradient evaluation which is formulated as a
function of the number of available processors. Although presented in the con-
text of unconstrained optimal control, our results for gradient computation are
also applicable to constrained problems. Furthermore, we show that the step size
obtained as a result of the line search performed at each iteration may also be
efficiently computed in parallel. We then combine the techniques for parallel gra-
dient evaluation and step size determination to produce parallel implementations
of the best-step steepest descent method and the Fletcher-Reeves conjugate gra-
dient method to solve the linear quadratic regulator (LQR) control problem

[LEWSS].

It is well known that a closed loop feedback form solution exists for the LQR
problem. Our motivation for solving that problem using iterative gradient based
techniques is that our basic parallel approach can be applied to more complex
control problems in which the system dynamics can be linearized and the cost
approximated quadratically. Furthermore, efficient parallel implementations of
gradient methods such as best-step steepest descent and conjugate gradient sug-
gests that similar parallel implementations of penalty function and gradient pro-

jection methods may be used to solve constrained control problems.

3|

e
»

o ol ok o
AL A) \r
» [N

£

ArAA SN \(- [.

o
(]
P’

|
LA

Our approach to the parallel evaluation of the step and gradient reduces the ¢

total number of operations required by sharing common terms when possible and
then introduces parallelism. The degree of parallelism exhibited by the step and
gradient computation techniques presented in this paper varies as a function of
the number of processors to be used. We constrain the number of available pro-
cessors, p , to lie in the range 1 < p < nN®, where n is the size of the system
state vector, NV is the number of stages in the control process and we assume

n > m,where m is the size of the control. One of the features of the proposed

paralle] iterative algorithms is that their structure is completely specified by the

2
number of processors whenever the number of stages N > [__p_] .
n

An efficient technique for gradient evaluation using a single processor has
been discussed by Polak [POL71, pp.66-69]. A direct implementation of this
technique on p processors achieves linear speedup for p up to n; however, for
p > n, the speedup is significantly reduced. In this paper, we present an
approach to gradient computation that may be efficiently implemented on up to
nN* processors and reduces to a direct parallel implementation of the gradient

evaluation given in [POL71] when 1 < p < n. However,forn < p < nN¥,

we show that our approach achieves speedup greater than —;—(p +n).

A critical step in our approach involves the parallel computation of the state
and costate vectors. When n = 1, the computations reduce to solving a forward
linear recurrence system followed by a reverse linear recurrence system, both of

size N. The parallel evaluation of m-th order linear recurrence systems has been

extensively studied [KOG73], [CHE75], [KUC76], [SAM75], [SAM77], [CHE78],
[GAJ81], [CAR84], [MEY85] and [MEY86]. To solve first-order linear block

-5-

recurrence systems in parallel, we use a blocked formulation of the approach
presented in [MEY86], [MEY86]. In addition to requiring less steps to solve a
first-order system than any of the above when 1 < p < nN*, the approach in
[MEY86] can be implemented on a simple ring network with broadcasting capa-
bility.

The organization of this paper is as follows : in Section II, we state the
unconstrained discrete linear quadratic optimal control problem, examine the gra-
dient of the cost function and give the steepest descent algorithm we shall con-
sider. Section III presents the step length and gradient computations required at
each iteration. In Section IV we give parallel procedures to solve the linear
recurrence systems required by Section III. Based upon the results of Sections III
and IV, Section V presents parallel implementations of the best-step steepest des-
cent method to solve the LQR problem and the corresponding performance

analysis. Finally, in Section VI conclusions are presented.
II. PRELIMINARIES
We consider the LQR discrete optimal control problem:
Problem 1: Given an m -input, discrete, time-varying linear system in which we
are given the initial state, z 4, and
2, =A; 2,1+ Bju;,, + =12..N, (1)

where for 1+ = 0,1,...,N, z; in E" is the state of the system at time : and for ¢

= 1,2,...,N, 4; in E™ is the control at time 7, find the m/V control vector

v = (ul,ul,. . ., uf) that minimizes the performance index

J(u)=%(z‘Qz + u'Ru).

where z is the nV vector z = (24,25, ..., z4), Q@ = Diag (@, Q2e-es

.
e

-

) {.b‘." ‘_i.‘_":' N Y l . ‘.'.'.';‘.’. '

T!’J‘LI'J'JFAT‘i")?"l“-'T"—'T‘?'mmm o i ‘gAn B6a R¥a fia Bt 2Vs B

-8-

Qy) is the nN XnN block matrix that consists of N n Xn symmetric positive
semi-definite blocks Q; and R = Diag (R, R ,,..., Ry) is the mN XmN block

matrix that consists of N m Xm symmetric positive definite blocks R; .

The hypotheses on the matrices @ and R insure that Problem 1 possesses a

unique solution u * [LUE84] and that [%] =0
y=u"

We now introduce a formulation for -gi that is used in our paralle] imple-
u

mentation of gradient algorithms.
A direct application of the chain rule for differentiation [GRAS81]| yields

dJ oJ , oJ dz

W ou T 9r du (2)

where the 2;’s are determined in accordance with Eq. (1), % and Y are the
u

Oz

1XmN and 1XnN Jacobian matrices u! R and z! Q respectively, and 9 i

du
the nN XmN block lower triangular Jacobian matrix that consists of N2 n Xm
dz dz;
blocks | — = obtained by the chain rule for all ¥ and j in [1,2,...,N]
by
dzi (; lii < J.
o3 B ift =3 (3)

A,‘A,’_l o AJ+IB] ift >]

Eq. (3) shows that the influence matrix -Z—i satisfies F, %
u

is the nN X nN block lower bidiagonal matrix that consists of N2 n Xn blocks

= F,, where F,

(F,)ij defined for all + and j in [1,2,...,N] by

-7-

I ifit =3
(F,)1] = —A" if ¢ =]+1
0 otherwsse

and F, is the nN XmN block diagonal matrix that consists of N2 n Xm blocks

[F,]’,j defined for all ¢ and j in [1,2,...,N| by

B; ifi =7
[F");’j = lo otherwise.
t
Let ¢ = % be the the m/N X1 gradient of J (u) with respect to u. The

matrix F, is non-singular and thus we may rewrite Eq. (2) as
g = Ru + F!F,”"Qz,
where z again satisfies Eq. (1).
Let F, be the nN Xn block matrix that consists of N n Xn blocks [Fo]i

defined for all ¢ in [1,2,...,N] by

A, ifi =1
[Fo].' = { 0 otherwise ,
and let \ be the nN costate vector A = (A, Ay, . . ., \Z),)\, in E™, defined
by
A= F,"Qz

Then, given u and z, the gradient ¢ may be obtained by using the three equa-

tions

F2=Fuu +F0209 (4)

FIx = Qz, (5)

R

- l'.-"
»

)

,‘n

LA SR

P
P Y RIS
R
P o

o

S
_a _r P

g = Ru + FlX\ (6)

t
With the notation g* = [-gi] , the version of the best-step steepest
U)y —yt

descent method that we use is the following:
Algorithm 1:Let u! be given.
Step O: Set £ = 1 and compute ¢ '.

Step 1: If Jg* |* < e stop; else go to Step 2.

Step 2: Compute af to minimize J(u* - of g*).

Step 3: Compute g ¥ *+1.
Step 4: Let u*+1 = u* —akg*,
Step 5: Set £k = k + 1 and go to Step 1.

Note that we compute ¢! in Step 0 and then compute ¢ k+1ip Step 3,

after the computation of af in Step 2. In Section III we present our approach to

k k+1

the computation of ¢!, a*, and ¢ and we show that the computation of of

k+1 shares common terms. In Section IV, we discuss efficient parallel pro-

and ¢
cedures for solving block linear recurrences and we use those procedures in Sec-
tion V to obtain a parallel implementation of Algorithm 1.
OI. GRADIENT AND BEST STEP COMPUTATION

We first consider the computation of ¢!, which is performed only once in
Step O of Algorithm 1. As a consequence of Egs. (4), (5) and (6) we obtain the
gradient evaluation technique proposed by Polak [POL71]:

Algorithm 2: Given u! and z,.

Step 1: Compute 2! such that F, z! = F, u! + Fz,.

o .‘-..)-’T

~

'- ,.a ". _'- i

T

Crr

.‘,‘.."}.,‘.—,/w-_w o

~

>3

-.
2, 8y 4
s 0

Pl
. r

a£r e
"

e -
P
.l'

e A
l.. "

L]

»
I. r'.' ',

o e
.
[Y

[) n

I"{:'/"-' p

LA
[

AR

peamy Y fa° 1ot Sa¥ §o0 8.0 4.0 Bd R s b 4 " T gt - R

-9-

Step 2: Compute A! such that F/\! = Qz 1.
Step 3: Compute ¢! = Ru! + F/\..

Due to the lower n X n block bidiagonal structure of F,, Steps 1 and 2
of Algorithm 2 require procedures for the solution of N stage forward and reverse

n X n block first-order linear recurrences, respectively. Such procedures are

presented in next section. Given \!, Step 3 computes ¢! by computing each of

t
the N uncoupled components g¢;! = [ddTJ] ; thus, Step 3 exhibits linear
' Ju=u!

speedup when executed in parallel.

We now consider the computation of the optimal step length a* . The

cost function is quadratic and therefore a closed form solution for af exists. It is
clear that
J(u) = %u‘(ﬁ’ + FEF,QF,\F, Ju,
therefore
J(u* —agt)=aa?+ba+c,
where

a = -é—(g",dk >,

b =-<gk gk>,
¢ = J(ut),

d* = (R + F!F,'QF,"\F,)g*. (

~1
—

and it follows that the optimal step length af is

2a <gkt d*>

A

P R

P LS

-10 -

Once d* is known, the gradient ¢ * *! is easy to evaluate using

gk+l=gk —a"d".

The matrix (R + F}!F,QF, 'F,) may be precomputed and the quan-
tity d ¥ may be obtained by performing a single matrix-vector product. How-
ever, we show in Section V that a more efficient approach can be obtained by
rewriting d* as

d* = Rg* + F}F,'QF,'F, g*,
and using Algorithm 3 below, where we note that instead of requiring F,™! and
F,™, we solve linear systems corresponding to F, and F/.
Algorithm 8: Given g * .
Step 1: Compute u* = Rg*.
Step 2: Compute 8¢ = F, g*.

Step 3: Compute w® such that F, w* = 6t .

| Step 4: Compute nf = Quw*.
| Svep 5: Compute v * such that Flv* = .
| Step 6: Compute x* = Ffvk.

Step 7: Compute d* = p* + x*.

With the exception of Steps 3 and 5, Algorithm 3 computes d ¥ by exe-
cuting a series of matrix-vector products followed by a vector sum. Each of the
matrix-vector products consists of N uncoupled block matrix-vector products.

thus exhibiting linear speedup when implemented in parallel. However, due to

the structure of F,, Steps 3 and 5 require the solution of N stage forward and -
reverse n Xn block first-order linear recurrences, respectively. As in the case of q

. ReRee

d

o .I.L'4__A

Tt T N et et LAY R R . A ettt et e et et ev e et e e e M N NN s
. . N - R R P TRV I, At et e DT . A P i N A RS RO T AR 4 IS SN
LJ‘.'\.‘-'J AP AN AN, WO RN AN ORI ST e S SR S S G, VOu Iy i Ty PR T A VAT, I A AT T UCTAW

Algorithm 2, this again suggests the need for parallel procedures to solve linear

k +1)\Ic +1 1

recurrences. Note that the state 2 and costate corresponding to u ¥+
can be obtained easily from the quantities w* and v¥ computed in Steps 3 and
5 of Algorithm 3, that is,

k+1 __ Lk k, k

and

NE+L — 2k | ok gk

IV. PARALLEL PROCEDURES FOR LINEAR BLOCK RECURRENCES

The model of SIMD parallel computation that we use consists of a global
parallel memory, p parallel processors, and a control unit, where all processors
perform the same operation at each time step (see Fig. 1). We further simplify

the model by making the following assumptions:

Al. Each computational operation takes the same amount of time, referred to
as a step.
A2, There are no accessing conflicts in global memory.

A3. All initial data resides in global memory.
A4. There is no time required to access global memory.

We now present two parallel procedures to solve forward and reverse .V
stage n Xn block first-order linear recurrence systems that we use to implement
Algorithms 2 and 3. The procedures are blocked versions of the parallel scalar

approach given in [MEY86| and are formulated as a function of the number p of

processors so that their structure is fixed whenever the number of stages

N> [%]2.

- . e L} - . . - -

...... e T T N

» - " A . - - " M .
VAT IR SN RSN RS,

..............

ittt
y]

e

VELI LS

v

i VLN NN

.,
o
.
o
-
o
\11

-12-

We first consider the parallel solution of forward recurrences. The for-

\

b

ward recurrence problem is: given n Xn matrices A;,s = 2, 3,..., N and given »

vectorsy; ¢ E®, ¢+ = 1,2,...,,N, find the n vectors z; such that z, = ~+, and z; ~

(]

= A,' Zi + % 1 = 2, 3,..., N. Let \
_N;: ifp >n "

a_)® /n)-1) o

—IN-1 otherunse (8) :

N

~

: and N
| p/n ifp >n ~
K = , (9) ..'

1 otherunse.

»

I'd

For w in [0,1,...,22-1], define the index sets ¢

folw) = {Ki + w(r®1):i = k-1,k-2,...,1}

A

and ,',:

,.

)) [y

| [1(w) = {ki + Maz (w+1,w(k*1)): i = kk-1,...,1}.

| R
| Thus, given v = ()74, . . ., 7%)', v € E™ and precomputed A [i +5,5] = ::
AijAivjaAj, g € fo(w), ¢ in [0,1,...,k-1], the following procedure solves ;‘:

.

the forward block recurrence system, where for presentation simplicity, we

i \(
‘ assume that 2 and & are integers. o
A

1. PROCEDURE FORWARD(N ,n ,p ,) \

2. z,: =y

3. FORw:=0TOQ-1DO

4. FORALL j ¢ f o(w) DO IN PARALLEL z; := ~;;
5. FOR ¢ := 1 TO Maz (1,k-1) DO

6 FORALL ; ¢ f |(w) DO IN PARALLEL

-13-

7. Zigj = ALt Vi
8. END FORALL
9. END FOR

10. FORALL j ¢ f ,w) DO

11. FOR ¢ := 0 TO £-1 DO IN PARALLEL
12. %4 :=A['. +.7'vj]zj—l t 2455
13. END FOR

14. END FORALL
15. END FOR
16. END PROCEDURE

When 1 < p < n, the index set f o(w) is empty and procedure FOR-
WARD reduces to sequentially executing step 7 N -1 times, each execution using
p processors. When n < p < nN*%, procedure FORWARD sequentially solves
0 reduced block recurrence systems in z; of size (p /n)?, each in parallel. Each
reduced system is solved in two phases: the first phase consists of the execution of
steps 4 and 5 and computes (p /n)? partial solutions, in which the first p /n are
the actual solutions and the second phase consists of the execution of loop 10 in
which the precomputed n Xn block matrices A [t +7,7] are used to update the
next p /n partial solutions at each iteration. We assign n processors to perform
each of the p /n concurrent executions of steps 7 and 12. The complete solution
to the block recurrence system is obtained after executing iterations of loop 3.
If Q is not an integer, then we replace 2 by [0] and simply terminate the com-
putation when zy is computed and if & is not an integer, we replace « by
lp /n).

We now modify the procedure FORWARD to solve N stage n Xn block

reverse linear recurrence systems, where the reverse recurrence problem is: given

APNRARA

.-'3'.“:}) ’_f

[}

-
«

.

r .“:»" ' ‘ﬂ

. e
)
O

NN SR

n Xn matrices A;,s = N-1,N-2,..,,
N,N-1,...,1, find the n vectors \; such that \yy = ¢y and \; = A; X\, + ¢,
t = N-1,N-2,.,

[0,1,...,02-1], define the index sets
rolw) = {ki + w(k?-1):i = k-1,x-2,...,1}
and
r(w) = {xi + Mez (w+1,w(k2-1)) : i = K,k-1,...,
Given ¢ = (¢f¢f, - - -, sf)', i € E™ and precomputed A [5 +1,5 ¢ +1] =
Al i A} - Al 7 ergw), i in [0,1,...,x-1], the following procedure

solves the reverse block recurrence system, where for presentation simplicity, we

-14 -

again assume that {2 and & are integers.

1. PROCEDURE REVERSE(N ,n ,p)

I

©

11.
12.
13.
14.

AN =N
FORw:=1-1TO0DO
FORALL j € row) DO IN PARALLEL) ; :=

FOR i := 1 TO Maz (1,k-1) DO
FORALL j ¢ r,(w) DO IN PARALLEL

N =AfaNa s
END FORALL
END FOR

FORALL j € ro(w) DO
FOR ¢ := 0 TO «-1 DO IN PARALLEL
i

END FOR
END FORALL

= A[F4+L7-1 1 N o+ N

1 and given vectors ¢; ¢ E™ , ¢

1. Let 2 and « be defined by Egs. (8) and (9). For win

gj '

“~
-~

v. A"'.ffp’ -

o,

o |

ALA AN

15. END FOR
16. END PROCEDURE

We now give the number of steps required to solve either an N stage for-

ward or reverse first-order n X n block linear recurrence system.

Theorem 1: Given N, n and p such that p =1 or % is an integer, the number

of parallel steps required to solve a block n X n first-order linear recurrence sys-

tem of length N using p processors is

4

2
(N -1)2°= f1<p <n
T(Nyn,p)= P
w ——N—El—tt(p—n) ifn <p < nN%.
(2] -
n

T
It is clear from Theorem 1 that the speedup S, = —! exhibited by the

T

procedures FORWARD and REVERSE is p whenl < p < n and %(p +n)

N-1 . .
when n <p < nN*® 2 .
p <n and " and ————— are integers. The corresponding
[1] 2
n
Sy

efficiency E, = —— is therefore 1 when1 < p < n and % + -21 when
p p

N -1
2
n

E, for the values of n = 8, 16, 32 and 64 respectively, where the efficiency

n <p < nN® and % and are integers. In Figs. 2, 3, 4 and 5 we plot

corresponding to the procedures FORWARD and REVERSE is denoted by the

dashed line in each plot. Thus, we see that the efficiency increases with increas-

0 ISR

4 %%
X

’
r S,

..
o e,
Y

ata

[4
ol s
/S

A

[g
Py

'o's
]

P

S S L T S AR LA R N T ~ o
REOL O A AR FOIA N A AR IR 2 O S AR A S

TN A R R TP AN

A,

-

ing values of n and p and is independent of N.
V. PARALLEL BEST STEP STEEPEST DESCENT <

We now use the parallel procedures for the solution of linear recurrences
discussed in the previous section to obtain parallel implementations of Algorithms
2 and 3 give the corresponding number of steps required for their execution when

p processors are used.
We first give the parallel implementation of Algorithm 2.

1. PROCEDURE GRADIENT(z,u ')

2. FORALL i € {1,2,..,N } DO IN PARALLEL v := B; v, ;

3. ="'+ Az

4. z! = FORWARD(N ,n,p ~);

5. FORALL ¢ € {1,2,...,N } DO IN PARALLEL ¢! := @, z; !;

6. A\ = REVERSE(N ,n,p ');

7. FORALL ¢ € {1,2,..,N} DO IN PARALLEL ¢;! := R; v;! + B\
8. RETURN g¢1;

9. END PROCEDURE

Lemma 1: Given 24, u 1 N,n,m and p suchthat p = 1or —Z- is an integer,

the number of steps required by the procedure GRADIENT to compute ¢! using

p processors, 1 < p < nN®,is

%(ﬁn +2m -2) + %’5 l(?n +2m-1) - 2%} f1<p <n
T(N.mm.p)= Nn Nm N-1
[—p_ l(Zn +2m -2} + [——p-](2n +2m-1) + -—-P—g-— 8p-n)+2nifn <«p < N2,
| (4]

|
| We next give the parallel implementation of Algorithm 3.

- - - - - - - - - . - ~ - » - - - - - LY I D DI TS I e) -
A ISR 0 S AT A A I A R T ot AT e e .
PRI T SION 0T 3, 5 FRFS M a}.n?.n'_‘.-hr'}i)i_”.h‘.n\;i\}.r‘.ﬁa‘;\.-\

D R R I L o L o O S TN N ae Ny
B S S S P o s, S B G AR N RN

- 17 -

1. PROCEDURE DIRECTION(g *)

2. FORALL i ¢ {1,2,..,N} DO IN PARALLEL u} := R; ¢};

3. FORALL s € {1,2,..,N} DO IN PARALLEL 6} := B, g%

wt = FORWARD(N ,n ,p 6");

FORALL ¢ ¢ {1,2,...,N } DO IN PARALLEL 7} := Q; w};
v*¥ = REVERSE(N ,n ,p 7%);

FORALL ¢ ¢ {1,2,...,N } DO IN PARALLEL x := Bfv};
FORALL i ¢ {1,2,..,N } DO IN PARALLEL d} := pu} + x %
9. RETURN d*;

10. END PROCEDURE

N o &

Lemma 2: Given ¢ k N,n,m and p such that p = 1 or % is an integer, the

number of steps required by procedure DIRECTION to compute d* using p pro-

cessors, 1 < p < nN® is

2
%(sn +2m -2) + % (2n +2m—l)—% if1<p <n
T(Nmmp)=J 1, Nm N-1
[T](211 +2m -2) + {—«p— ‘(211 +2m-1) + |——=— |8(p-n) ifn <p < nN%.
(5]
n

At this point it is interesting to contrast the result of Lemma 2 with the
number of steps necessary to obtain d* based upon the precomputation of the
matrix (R + F{F,*QF,”'F,). Given p processors, 1 < p < Nm, the number

of steps required to obtain d* using Eq. (7) is

T(N,m.,p)= [_f‘ip'!‘.](sz 1),

Thus, for p in the range 1 < p < nN®, the use of Algorithm 3 to compute d*

results in a smaller number of steps than using the precomputed matrix

ERTAE N

RARAAS

g

SN

AL AR AT

5 2 %%y

Y -5

v o

P

IR

o

Y)\‘

- 18-

(R + FIF,'QF,'F,) and performing a matrix-vector product.
We now embed the parallel procedures GRADIENT and DIRECTION

to obtain a parallel implementation of Algorithm 1 and we then give the

corresponding number of steps required for one iteration.

1. PROCEDURE PSDM(zg,u?)
2. k=1,
3. ¢! = GRADIENT(z,u!);
WHILE |¢* | > ¢ DO
d* = DIRECTION(g*);
of = <gktgt>/<gk d* >;
FORALL i ¢ {1,2,..,N } DO IN PARALLEL ¢} *! := ¢* - o* d};
FORALL ¢ ¢ {1,2,....N } DO IN PARALLEL u} *!:= u} - of g}

© ® N e ¢ »

k=k +1;
10. END WHILE
11. END PROCEDURE

Theorem 2: Given z, u 1 N,n,m and p such that p = 1or 2 isan integer,
n

the number of steps required by one iteration of procedure PSDM using p proces-

sors, 1 < p < nN%, is

Nm n? .
— (6n+2m-2)+ —_— (2n+2m+7)—T + 2logop fi<p <n
T(Namp)=
Nn Nm N-1 ‘ i A"
ra (2n +2m -2) + - (2n +2m +7) + |———5— Blp-n) « 2ogop il n < p < nN*.
-1)

3w

The speedup S, and efliciency E, for procedure PSDM can be obtained

directly from Theorem 2 as

PN

%

g, = &
S ™
‘

where s
F

T,=Nn(6n +2m -2)+ Nm(2n +2m +7)-4n? e

1n? g

Tp=ﬂ(2n +2m—2)+—1!'£(2n + 2m +7)+M+2log2p, 3

p P p +n

and for simplicity, the ceilings have been removed. For the range of values of NV, D‘
n and m of interest ¢
T,=< Nn(6n +2m -2)+ Nm(2n +2m +7), X

9 .

T, =~ M(zn +2m -2) + &(21: +2m +7)+ 81Nn , v

P p p +n <5

and thus .
be

S == M .

P 2 ' -

c + 8n*p :

p +n ;

)

E =~ C + 4n? :

P ST

c+ 2P .

p +n e

where z
t-

.'

.

C=2n+mp-2n+7m 0e

Using the fact that

P _ <«
p +n —

we may find lower bounds for the speedup and efficiency of procedure PSDM,

that is

pD

S, > ——,
P = D +4n?
5> D
D + 4n?
where
D=2n+m)P-2n +7m + 4n2
Note that
D _ 6n + E
D +4n2 10n2+ E’
where

=2m?+4nm -2n + Tm,

thus £ > 0, and therefore

In Figs. 2, 3, 4 and 5, we plot E, for the procedure PSDM for the
values n = 8, 16, 32 and 64 respectively, and in each case use the values m =
1, 4 and 8. It is then easy to see that E, increases with m, and that the

efficiency of the procedure PSDM is bounded from below by the efficiency of the
procedures FORWARD and REVERSE.

VI. CONCLUSIONS

In this paper a parallel implementation of the best-step steepest descent
method has been presented to solve the LQR optimal control problem. The pro-

cedure exhibits the desirable property that its structure, and hence parallelism, is

determined by the number of available processors. Thus, unlike approaches in

N

PN

PSS
O

Nt AKARANRR |

cos
L}
3

uf

A

»
2ala’a

ce, ,.":‘... .

.' »
.

-

Ot |

A

-21-

which the structure of the procedure changes with problem size, the procedure
presented in this paper maintains the same computational and interprocessor
communication requirements, independently of the number of stages in the con-
trol problem. Furthermore, the procedure has been shown to exhibit an efficiency

E, always greater than 0.6.

The paper’s basic approach can be used to produce parallel implementa-
tions of more complex gradient based methods. For example, the procedure
PSDM may be easily modified to produce the following parallel version of the

Fletcher-Reeves conjugate gradient method.

1. PROCEDURE PCGM(z4,u)

2. k =1;

3. n!' = g! = GRADIENT(zg,u);

4. WHILE |¢* |* > ¢ DO

5. d* = DIRECTION(=');

6. of = <gt,mt>/<d* 7t >;

7. FORALL ¢ €{1,2,...,N} DO IN PARALLEL g/ *! := ¢/ - o* d};
8. FORALL ¢ € {1,2,...,N } DO IN PARALLEL u} *!:= uf - of n};

9. ﬁ" =<gk+1,gk+l>/<gk,gk>;

10. FORALL i ¢ {1,2,...,N } DO IN PARALLEL 7} +1:= g% *!. gk r %,
11. k=k%k +1;

12. END WHILE

13. END PROCEDURE

The procedure PCGM exhibits slightly less speedup than the procedure

PSDM due to the additional evaluation of the term 8% . However, this is offset

by gaining the improved convergence properties of a conjugate gradient method.

. T 20 Th T l
LA &R &

-99.

Finally, we note that the procedures presented in this paper may be
used to solve discrete optimal control problems which involve nonquadratic cost,
nonlinear dynamics and constraints on the states and/or controls. In that case,
one needs to use penalty function and gradient projection methods and suitable

approximations to cost function and system dynamics.
REFERENCES

[CAR84] Carlson, D.A., and Sugla, B., Time and Processor Efficient Parallel

Algorithms for Recurrence Equations and Related Problems, Proceed-

ings of the 1984 International Conference on Parallel Processing,

l“‘"{ . 2

August 21-24, 1984, pp. 310-314.

-'-’A‘

a5
LN

[CHE75] Chen, S.C. and Kuck, D.J., Time and Parallel Processor Bounds for

Ve
g '

Linear Recurrence Systems, {EEE Trans. Computers., Vol. C-24,
No.7, July 1975, pp. 701-717.

[CHE78] Chen, S.C., Kuck, D.J. and Sameh, A.H., Practical Parallel Band Tri-
angular System Solvers, ACM Trans. on Mathematical Software, Vol.
4, No. 3, September 1978, pp. 270-277.

[GAJ81] Gajski, D. J., An Algorithm for Solving Linear Recurrence Systems on
Parallel and Pipelined Machines, IEEE Trans. Computers., Vol. C-30,

L]

AN
R
No. 3, March 1981, pp. 190-206. L
PRV
s
[GRAS81] Graham, A., Kronecker Products and Matriz Calculus : with Applica- ;

»”
[

tions, Ellis Horwood Limited, West Sussex, England, 1981. A

.',:.__'.
[KOG73] Kogge, P.M., and Stone, H.S., A Parallel Algorithm for the Efficient BANS
Solution of a General Class of Recurrence Equations, IEEFE Trans. R

Computers., Vol. C-22, No. 8, August 1973, pp. 786-793.

NS
e
2y 4y %y ‘e

A RIPRE ok 't
a

I' L)
SN
oy

ol
,’\

»
.“-

e A
R

a v .
VA A

LRGN
". ..".
.

o

. .'l .‘--

[L
ST AT AR A R K
LS RN S

:
-93-
[KUC76] Kuck, D. J., Parallel Processing of Ordinary Programs, Advances in :',':
Computers., Vol. 15, Academic Press, New York, 1976, pp. 119-179. E
[LAR73] Larson, R.E. and Edison, T., Parallel Processing Algorithms for the -
Optimal Control of Nonlinear Dynamic Systems, IEEE Trans. Com- :
puters., Vol. C-22, No. 8, August 1973, pp. 777-786.
[LEWS8S6] Lewis, F. L., Optimal Control, John Wiley and Sons, New York, N.Y., 3
1986. '\
o~
[LUE84] Luenberger, D. G., Linear and Nonlinear Programming, Second Edi-
tion, Addison-Wesley Publishing Company, Reading, Massachusetts,
1984. :
[MEY73] Meyer, G.G.L., A Segmented Algorithm for Solving a Class of State ;:
Constrained Discrete Optimal Control Problems, Dectsion and Control
Theory Conference, San Diego, California, 1973, pp. 73-79. i::
[MEY85] 22yer, G.G.L., and Podrazik, L.J., A Matrix Factorization Approach ‘
to the Parallel Solution of First-Order Linear Recurrences, Proceed- "~
ings of the 28-rd Annual Allerton Conference on Communication, E
Control and Computing, October 2-4, 1985, pp. 243-250. E
[MEYS86] Meyer, G.G.L., and Podrazik, L.J., A Parallel First-Order Linear R
Recurrence Solver, Proceedings of the 20-th Annual Conference Infor- E
mation Sciences & Systems, Princeton, New Jersey, March 19-21, '::
19886.
[POL71} Polak, E., Computational Methods in Optimization. A Unified
Approach, Academic Press, New York and London, 1971.
[SAM77] Sameh, A.H., and Brent, R.P., Solving Triangular Systems on a Paral-
lel Computer, SIAM J. Numer. Anal., Vol. 14, No. 6, December 1977,

...............
............

.........

P'.ﬂ-"v“-i'm" L W

"

[SCHS1]

[TRASO]

.....

.24 -

pp. 1101-1113.

Scheel, C. and Mclnnis, B., Parallel Processing of Optimal Control
Problems by Dynamic Programming. Information Sciences. \Vol. 25,

No. 2, November 1981, pp. 85-114. A

Travassos, R. and Kaufman, H., Paraliel Atgorithms for Solving Non-
linear Two-Point Boundary-Value Problems Which Arise in Optimal
Control, Journal of Optimization Theory and Applhications Vol. 30,

No. 1, January 1980, pp. 53-T1.

Pl E P L

-
L

1]

R IR R I

AL S S

‘r.’.:\.:\."'-'._.'. """"""
o

I A 2 AT D AT A AT A AR Il S

----- S N N
) _’...-. A RS f‘-‘\f\l.f“[-f'.]

......
......

Parallel Memory

“!1 1‘[2 A!a e s @ A!

Interconnection Network

Pl P2 P3 IR Pp
Parallel Processor &
v,
-
|

Figure 1. The Abstract Parallel Computational Model

Cgte
R A
[N

.

-
.
Y Wy 2y N

O}

.
»

Vs

‘s ‘rf

.
X

!

r

- 26 ~

-

BN ..vlf.*. ‘... PO PN s " ...v ., . . .-.' .-v.. : .,. .) .'t) i .\;\-A\-A\-\-\u A 08 v .-..\..\. ‘.....-.... .n..?.-......\...\.- y ‘.p- -{\.-n\.tb)h}\'».-.n-.u u-:ru-.-ﬁ
WAsd pue ASYIAIY “@UVM¥0d saanpadoad jo Aouaydy3iy °7 2andyyg
d S 0pY 00¢ 09z 0Q1
I o op P 9 6,
Jsz-0
8=u dSUIATY/ IVMEO0I
- .._Om ‘0

=W g=u WASd

8=W g=U WASJ

L0

-
|
\[Ta}

juu * 1

WASd Pue JSYAAIY ‘QUYMHO4 saanpadoad jo Aouaydyjyy ¢ aindig

Palta¥d

o

QoS QY Qo€ 0p2 0p1 | 8

TETETET

|
v
Val
o~
]

91=uU ISYIAIY/AdVMIO4

TV

F,

——— et ot csmpee

27 -

ﬁmN.o

=W 91=u WASd
=W 97=u WASd
g8=Ww 9[=u WASd

00°1

v

- 28 -

G Dt AMERE Kyl *) DRI " Eaetutecd -

WASd pue ASYIATY ‘QIVMY0d soanpadoid jo Aouaydy3ijy 'y 2andyy
omm o@w owm owN mm_
£
I.fmw.o
(€=U JSUIATI/qIVMIO0d
J0s°0

520
=0 Z€=U WASd
=8 Zg=U WASd
g=W €=U WASd

01

d

!

REar oy IS

w3

£

«

RSN
‘nch

LI

RN

N

ERRIRENEN

ats

5
Lol

-
\ 3

NN

E\

Fen] SSLROEri) CXAAAAAN] (EaeREaet Ry

Tt
o
m
WaSd pue ASYIATY ‘QYVMYO4 saanpadoad jo Aduaydrzzy ¢ 2andp4 f
1f\
o d
\f\
Q l'.
- 00$ 00 00€ 002 001 .) “ XA
g
)
...-..
f\..
¥
Jsz-0M
5
w\u
%
»
v
#9=U FSYIATY/QYIVMYO0d . T
450
[}
[=,) P —
N —— ———
] — —
/
S~
X0
1=10 %9=U WASd
w_ h=m %9=U KASd
“« g=u $9=u HASd
F.\. .
0°1
4
| a9 d

T
L
w

VIATCACOT-

